
Approximate Nearest Neighbor Libraries 1

💡
Approximate Nearest Neighbor
Libraries

Created

Updated

Status In Production

Started at:

Contributors: List contributors

NMSLIB
https://github.com/nmslib/nmslib

https://github.com/nmslib/nmslib/blob/master/python_bindings/parameters.md

Pros

It’s over 10x faster than Annoy

It is possible to query using vectors of different dimensions than the one which
were indexed.

Batch query and batch indexing is possible.

Supports a lot of similarity measures.

Uses a graph based approach which are current state of the art for ANN.

Easy install with pip.

Most accurate at the moment. Check this blog.

@March 24, 2020 11:40 AM

@April 13, 2022 4:00 PM

@March 13, 2020

NMSLIB
Hnswlib
Faiss
FLANN
SPTAG

https://github.com/nmslib/nmslib
https://github.com/nmslib/nmslib/blob/master/python_bindings/parameters.md
https://erikbern.com/2018/06/17/new-approximate-nearest-neighbor-benchmarks.html

Approximate Nearest Neighbor Libraries 2

Cons

Not under active development. Last commit was almost 6 months ago.

Lots of tunable parameters for optimizing the performance according to our
needs.

Title
Average Indexing Time (sec)Indexed 10^5

vectors of dimensionality=1000
Average Query Time

(sec)Queried 1 vector.

Untitled 263.991 0.0013

Hnswlib
https://github.com/nmslib/hnswlib

https://github.com/jlmelville/rcpphnsw

It's a smaller independent sub-project of NMSLIB

Pros

Light weight, not many dependencies

It is possible to query using vectors of different dimensions than the one which
were indexed.

Batch query and batch indexing is possible.

Uses a graph based approach which are current state of the art for ANN.

Cons

Only supports l2, cosine and inner similarity measures.

Not many stars on github which indicates not many people are using it.

Default parameters giving poor approximate nearest neighbours. When tried to
query an already indexed element, the nearest neighbour was not the element
itself.

Lots of tunable parameters for optimizing the performance according to our
needs.

Title
Average Indexing Time (sec)Indexed 10^5

vectors of dimensionality=1000
Average Query Time

(sec)Queried 1 vector.

https://www.notion.so/2842ea6194c643ec876e9c63878bb543
https://github.com/nmslib/hnswlib
https://github.com/jlmelville/rcpphnsw

Approximate Nearest Neighbor Libraries 3

Title
Average Indexing Time (sec)Indexed 10^5

vectors of dimensionality=1000
Average Query Time

(sec)Queried 1 vector.

Untitled 113.449 0.0014

Faiss
https://github.com/facebookresearch/faiss

Pros

Has over 6k stars on github.

Has support for both cpu and gpu implementations.

Under active development, last commit was made 10 days ago.

Good documentation.

Very low indexing time.

Incremental index update is possible. We may need to retrain the index if we
believe that the new data might disturb the existing distribution a lot. But this
shouldn’t be a problem since the total indexing time is less than 2 sec.

Uses a graph based approach which are current state of the art for ANN.

Easy to use and install.

Cons

Slow query time with default parameters. (.04 sec)

It is not possible to query using vectors of different dimensions than the one
which were indexed.

Lots of tunable parameters for optimizing the performance according to our
needs.

Uses some kind of cell quantization techniques to speed up the query time for
HNSW. Without this quantization query response times are almost 10x slower
than NMSLIB.

Available similarity metric are - l2 and dot product.

Slightly less accurate than NMSLIB. Check this blog.

https://www.notion.so/ed774e5cf6c14f22b443d5a513d20395
https://github.com/facebookresearch/faiss
https://erikbern.com/2018/06/17/new-approximate-nearest-neighbor-benchmarks.html

Approximate Nearest Neighbor Libraries 4

Title
Average Indexing Time (sec)Indexed 10^5

vectors of dimensionality=1000
Average Query Time

(sec)Queried 1 vector.
Title

Average Indexing Time (sec)Indexed 10^5
vectors of dimensionality=1000

Average Query Time
(sec)Queried 1 vector.

Untitled 3.005 0.009

FLANN
https://www.cs.ubc.ca/research/flann/

https://github.com/primetang/pyflann

Pros

Cons

Pretty old lib.

Very poor documentation.

Python binding seemed a bit buggy (not compatible with python3) and not that
straightforward to use. I tried to fix some issues but couldn’t make it work. Didn’t
spend much time looking into it.

SPTAG
https://blogs.microsoft.com/ai/bing-vector-search/

https://github.com/microsoft/SPTAG/blob/master/docs/GettingStart.md

Pros

It supports online updation of indices.

Cons

Not that straightforward to install.

Takes forever to build indices for 1000 dimensional 10^5 vectors. I doubt if
Microsoft released the entire code because it shouldn’t be this slow.

Very new, so might not be mature enough compared to other libraries.

No documentation at all.

Title
Average Indexing Time (sec)Indexed 10^5

vectors of dimensionality=10
Average Query Time

(sec)Queried 1 vector.

https://www.notion.so/0819f5bb5417498da5aa2d29e4f193ff
https://www.cs.ubc.ca/research/flann/
https://github.com/primetang/pyflann
https://blogs.microsoft.com/ai/bing-vector-search/
https://github.com/microsoft/SPTAG/blob/master/docs/GettingStart.md

Approximate Nearest Neighbor Libraries 5

Title
Average Indexing Time (sec)Indexed 10^5

vectors of dimensionality=10
Average Query Time

(sec)Queried 1 vector.

Untitled 956.347 0.0002

Title
Average Indexing Time (sec)Indexed 10^5

vectors of dimensionality=1000
Average Query Time

(sec)Queried 1 vector.

Untitled 9392.894 0.032

https://www.notion.so/cb9551915b654da2b80e333cdf7ef23f
https://www.notion.so/e3599194700b46e2ad1c5b6a95f839cc

