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Hello, my name is Sumit and I have been working with e-bot7 for the last couple of 
months as a data scientist. Most of my background in machine learning has been in 
image processing and NLP. But Since last few weeks I have been studying about 
speech recognition. The goal of this presentation is to give a short introduction about 
automatic speech recognition to get you started quickly..



Outline
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This is the outline for today’s presentation. We are mainly going to focus on the 
classical ASR pipeline and in this we will be talking about what audio signals are? We 
will discuss a common feature extraction technique that is used with audio data and 
we will also talk about other components of the pipeline like Acoustic Model, 
Language Model and Hypothesis Search. Towards the end we will see an evaluation 
metric that is used to compare the performance of various ASR models and then we 
will shortly discuss how an end to end approach works.

Ok so lets start.



Introduction

What is ASR?

It is the task of detecting spoken words from an audio signal.

Model

Source - https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-with-deep-learning-28293c162f7a 

Automatic speech recognition is the task of detecting spoken words from an audio 
signal. The input to the ASR pipeline or model is a sequence of features extracted 
from audio files and the output is simple plain text.

https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-with-deep-learning-28293c162f7a


Classical ASR Pipeline

1. Signal processing and feature 

extraction - cleans the audio signal and 

extracts feature vectors.

2. Acoustic model (AM) - estimates the 

probability of a hypothesized audio 

sequence.

3. Language model (LM) -  estimates the 

probability of a hypothesized 

word/character sequence.

4. Hypothesis search -  combines AM and 

LM scores and outputs the word 

sequence with the highest score.
Source - 

http://125.234.102.146:8080/dspace/bitstream/DNULIB_52011/6853/1/automatic_speech_recog
nition_a_deep_learning_approach.pdf 

For now lets assume that the neural network is not a single end-to-end network but 
instead a pipeline consisting of these 4 components.

http://125.234.102.146:8080/dspace/bitstream/DNULIB_52011/6853/1/automatic_speech_recognition_a_deep_learning_approach.pdf
http://125.234.102.146:8080/dspace/bitstream/DNULIB_52011/6853/1/automatic_speech_recognition_a_deep_learning_approach.pdf


What is Sound?

Source - https://towardsdatascience.com/ok-google-how-to-do-speech-recognition-f77b5d7cbe0b
Source - https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-with-deep-learning-28293c162f7a 

Sound is a longitudinal pressure wave formed of compressions and rarefactions of air 
molecules in a direction parallel to that of the application of energy. Compressions are 
zones where air molecules have been forced by the application of energy into a 
tighter-than-usual configuration, and rarefactions are zones where air molecules are 
less tightly packed.

Sound is represented as waves. Generally, these waves have 2 axes. Time is 
represented on the x-axis and Amplitude on the y-axis. So at every instant of time t, 
we have a value for amplitude.

The sounds we hear generally are mixture of multiple sound waves of different 
frequencies. See the second fig.

https://towardsdatascience.com/ok-google-how-to-do-speech-recognition-f77b5d7cbe0b
https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-with-deep-learning-28293c162f7a


Analog to Digital Signal

● Audio is a continuous analog signal.

● Sampling Rate - number of samples 

collected per second. 

● Some common sampling rates are:
○ 44.1KHz

○ 16KHz

● Audio files such as .wav files contains 

discrete digital signals.

● Use python package ㅡ librosa for 

reading .wav files.

Source - 
https://towardsdatascience.com/ok-google-how-to-do-speech-recognition-f77b5d7cbe0b 

Audio is a continuous analog signal. What this means is that it has some amplitude 
value at every instant of time aka it has some value for every nanosecond, or maybe 
every picosecond. We don’t want to store that amount of information so we convert it 
into discrete form. To convert it into discrete form, we record samples (aka the 
amplitude values) at every time step. So for a 5-second audio, we can record samples 
at every 1 second. That’s just 5 values (samples)! This is called the Sampling Rate.

For speech recognition, a sampling rate of 16khz is enough to cover the frequency 
range of human speech.

Raw audio files such as .wav files contains this discrete digital signals. A python 
package like librosa  can be used for reading these .wav files. 

https://towardsdatascience.com/ok-google-how-to-do-speech-recognition-f77b5d7cbe0b


Signal Processing and Feature Extraction

● Chunking - Grouping our sampled audio into 

20-millisecond-long chunks. 

● So now the audio is a sequence of 20-millisecond-long 

chunks or audio frames.

● Fourier Series - Is a way to represent a function as the sum 

of simple sine/cosine waves.

We now have an array of numbers with each number representing the sound wave’s 
amplitude at 1/16,000th of a second intervals. We could feed these numbers right into 
a neural network. But trying to recognize speech patterns by processing these 
samples directly is difficult and computationally expensive. Instead, we can make the 
problem easier by doing some pre-processing on the audio data.

Let’s start by grouping our sampled audio into 20-millisecond-long chunks. So now 
the audio is a sequence of 20ms chunks.  But even this short recording is a complex 
mixture of different frequencies of sound. To make this data easier for a neural 
network to process, we are going to break apart this complex sound wave into its 
component frequency parts.



Fourier Transform

● Fourier Series - Is a way to represent a 

function as the sum of simple 

sine/cosine waves.

● Fourier Transform - It uses Fourier 

Series to convert our time-vs-amplitude 

signal to time-vs-frequency signal.
○ Requires less storage space.

○ Sort of a frequency fingerprint for audio 

snippet.

● Spectrogram - If we repeat this process 

on every 20 millisecond chunk of audio, 

we end up with a spectrogram.
Source - 

https://towardsdatascience.com/ok-google-how-to-do-speech-recognition-f77b5d7cbe0b

We do this using a mathematical operation called a Fourier transform. It breaks apart 
the complex sound wave into the simple sound waves that make it up. Once we have 
those individual sound waves, we add up how much energy is contained in each one. 
We create a fingerprint of sorts for this audio snippet.

If we repeat this process on every 20 millisecond chunk of audio, we end up with a 
spectrogram.



Spectrogram

Source - https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-with-deep-learning-28293c162f7a 

On the x-axis are time chunks or windows and on the y-axis is frequency. Each 
column is a feature vector of a 20ms chunk. The amplitude of the spectrum at a 
particular frequency for a particular chunk of time is represented as the color intensity 
at that point. Red denotes higher intensities and blue denotes lower intensities. Each 
element represents sort of the strengths of each frequency in this little window. You 
can see that this sound snippet has a lot of low-frequency energy and not much 
intensity in the higher frequencies. That’s typical of “male” voices. 

A spectrogram is cool because you can actually see musical notes and other patterns 
in audio data. A neural network can find patterns in this kind of data more easily than 
raw sound waves. So this is the data representation we’ll actually feed into our neural 
network.

https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-with-deep-learning-28293c162f7a


Recap 



Acoustic Model

Source - https://androidkt.com////recognition-encoding/  

Now that we have our audio in a format that’s easy to process, we will feed it into a 
deep neural network. The input to the neural network will be a sequence of 20 
millisecond audio chunks. For each little audio slice, it will try to figure out the letter 
that corresponds the sound currently being spoken.

https://androidkt.com////recognition-encoding/


Acoustic Model - Challenges

Source - https://androidkt.com////recognition-encoding/  

● Length of the input sequence  is not the 

same as the length of the transcription 

sequence.
○ Use a dataset where labels are chunkwise. 

Each chunk is mapped either to valid 

character from the transcript or to an empty 

character.

■ Labelling is time consuming (boring) 

and error prone.

■ A single character spanning multiple 

chunks.

○ Connectionist Temporal Classification (CTC).

One fundamental problem is that the length of the input is not the same as the length 
of the transcription. If I say “hello” very slowly then I can have a very long audio signal 
even though I didn’t change the length of the transcription or if I say hello very quickly 
then I have a very short transcription or a very short piece of audio.

One way to overcome this is to have a dataset that is patiently labelled chunk wise. 
For chunks which do not correspond to any alphabet we can label them with some 
empty character. One big problem with this solution is that this kind of labelling is very 
time consuming, boring and error prone. Another issue with this approach is that a 
single character can span multiple chunks e.g. we could get “ ttooo” because the “o” 
is spoken for a longer duration.

Connectionist Temporal Classification solves both of these problems for us.

https://androidkt.com////recognition-encoding/


Connectionist Temporal Classification (CTC)

It is a loss that solves both problems for us. With CTC

● we only have to tell the CTC loss function the 

transcribed ground truth that occurs in the audio. 

Therefore we ignore both the position and length of 

the audio and transcription.

● No need to worry about single character spanning 

over multiple windows as CTC performs a squeezing 

operation. 
○ AAA-B = AB

Source - https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c 

So what is connectionist temporal classification? It is a kind of loss. It requires the 
transcribed ground truth that occurs in the audio sequence and no one to one 
mapping between audio frames and transcribed characters is required. So we don’t 
need to worry about the length of audio and transcription and their alignment.

Another thing that CTC does is it uses a squeezing operation while computing 
transcription paths. The aim of this squeezing operation is to remove duplicate 
characters and unnecessary blanks. Because of this we don’t need to worry about 
single character spanning multiple audio frames.

If you see the image on the right the character A is spanning 3 audio frames and then 
there’s a blank and then B. After this squeezing operation all the duplicate As will be 
removed and then blanks will be removed and we will be left with only AB.

https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c


Connectionist Temporal Classification (CTC)

How CTC works?

1. Compute all the possible paths to the ground truth 

transcription. 
a. AA = A

b.  A- = A

c.  -A = A

2. Compute the scores for these paths by multiplying 

the corresponding character scores together.
a. AA = 0.4*0.4 = 0.16

b.  A- = 0.4*0.6 = 0.24

c.  -A = 0.6*0.4 = 0.24 

Source - https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c 

Now lets try and understand how this CTC loss is computed? And How does it know 
where each character occurs in the audio frame? Well, it does not know. Instead, it 
computes all possible paths/alignments of the ground truth transcription that can be 
reached from the AM output matrix and takes the sum scores of these paths. In this 
way, the models learns to predict those characters that will increase the overall score 
of a ground truth transcriptions.

Lets try to understand this with a simple example. This figure shows the softmax 
output of an AM model for an input sequence of 2 audio frames. The model outputs a 
probability distribution over 3 alphabets - a,b,empty. Let the ground truth transcription 
be a.

So the first step is to compute all the possible path to the ground truth transcription. In 
this example we have 3 possible paths. Next step is compute the scores of each of 
these paths. For this just multiply the probability of each character being predicted at 
that time step.

https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c


Connectionist Temporal Classification (CTC)

How CTC works?

3. Calculate the score for a given ground truth 

transcription by summing over the scores of all 

paths corresponding to this transcription. 
a. A = 0.16 + 0.24 + 0.24 = 0.64

b. This is the likelihood probability of the ground truth.

4. To compute the loss just take the negative log of the 

likelihood probability computed in the previous 

step.

Tensorflow provides the implementation of CTC loss.

Source - https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c 

Next step is to compute the overall score of the ground truth transcription. For this just 
add the individual scores that you computed in the previous step. This score denotes 
the likelihood probability of the ground truth. Now to compute the loss just take the 
negative log of this likelihood.

Almost all the deep learning frameworks provide off the shelf implementation of CTC 
loss.

So using this loss we can comfortably train our acoustic model without being worried 
about the alignment of input audio and ground truth transcription. 

https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c


Recap 



Inference & Hypothesis Search

How to use the Acoustic Model for Inference?

A simple and very fast algorithm is max decoding 

which consists of two steps:

1. It calculates the best path by taking the most 

likely character per time-step.

2. It then performs a squeeze operation on the 

encoding by first removing duplicate characters 

and then removing all blanks from the path. 

What remains represents the recognized 

transcription.

Now assuming that the acoustic model is trained how can we generate transcription 
from this?

So far we know using CTC we can calculate the scores or paths to a given ground 
truth transcription. But during inference no ground truth transcriptions are available. 
So how can we generate the transcriptions? One way would be to compute all the 
path and then just choose the one with the best score but it is combinatorially very 
expensive.

A simple and very fast algorithm is max decoding which consists of two steps.

It calculates the best path by taking the most likely character per time-step. That is for 
each time step simply choose the character which has the highest probability. Once 
you have done this for each time step then simply use the squeeze operation.
It undoes the encoding by first removing duplicate characters and then removing all 
blanks from the path. What remains represents the recognized transcription.

It is only an approximate algorithm and it might always not give the best results. 
Actually just using this often gives very terrible results. 

There are no efficient solution in general. People usually use generic search solution 
like - Prefix beam search instead of max decoding. We are not going to go into the 
details of beam search instead we will focus on another issue that arises even if you 
use beam search or any other hypothesis search techniques.



Language Model

● Even with better decoding, CTC models tend to make spelling  + linguistic errors.
○ Independent assumption.

○ Not enough audio data to learn complicated spelling and grammatical structure.

○ Very small vocabulary. 

Source - https://arxiv.org/pdf/1412.5567.pdf 

So the problem is that even with better decoding CTC models make spelling and 
grammar mistakes. The left table shows the transcriptions from a CTC model. You 
can see that their are some spelling mistakes for example the spelling of boston is 
wrong. Some reasons why CTC has these issues are
It assumes that each time step is independent of each other. Then there’s not enough 
audio data to learn complicated spellings or names of persons or places and due to 
this the effective vocabulary of the acoustic model is not big.

The right table shows the results that were refined using a language model.

https://arxiv.org/pdf/1412.5567.pdf


Language Model

A possible solution is to train a language model on massive text corpora.

● Learn spelling + grammar

● Greatly expanded vocabulary

● Contextual bias

Source - https://arxiv.org/pdf/1412.5567.pdf 

The aim here is to find a sequence c that maximizes the combined objective Q(c).

Language models can be really useful in this regard. Since textual data is 
comparatively easily available and there are a lot of unsupervised algorithms for 
training language models so it is easy to train a language model. A Language model 
is capable of learning spelling and grammar rules and because of huge textual data it 
has a big vocabulary too.

Because of all these reasons it makes a lot of sense to use a language model to 
refine the results of acoustic model. With help of this equation we combine the scores 
of acoustic and language model to get the final prediction score for a character. Alpha 
and beta are regularizations parameters to control the influence of language model 
and sequence length.

https://arxiv.org/pdf/1412.5567.pdf


Evaluation Metric - Word Error Rate (WER)

● S (Substitutions) : Number of words replaced.
○ What a light day

● I (Insertions) : Number of words that got inserted but were not said.
○ What a beautiful bright day

● D (Deletions) : Number of words that got omitted but were said.
○ What a day

● N : Total number of spoken words in the reference audio.

Reference Audio : What a bright day

To measure the performance of ASR systems we use word error rate as the 
evaluation metric. It is defined as 



Cons of Pipeline Approach

Cons of pipeline approach for ASR

● A lot of manual effort is required in designing these pipelines.
○ Audio and transcription alignment with CTC

○ Hypothesis search using prefix beam search

● Each component of the pipeline has to be individually trained.
○ Acoustic Model

○ Language Model

So far we saw a pipeline based approach for automatic speech recognition. There are 
some pain points or bottlenecks of these pipeline based approaches. A lot of manual 
effort goes in designing these pipeline and making them robust specially for edge 
cases. For instance we saw that we needed CTC algorithm for aligning audio and 
ground truth transcriptions. Then for decoding or inference we need to use some 
generic search algorithms like prefix beam search and even after this the results were 
not perfect so we refined them with the help of language model.

So there are so many components in this pipeline and each of these components has 
to be individually trained. 

One way to avoid all this is to use End-to-End approaches. In recent times a lot of 
focus has moved towards the end-to-end approaches. Performance gap between 
pipeline and end-to-end approaches has become very narrow now and many state of 
the art methods are trained end-to-end.



Listen, Attend and Spell (LAS)

Source - https://arxiv.org/pdf/1508.01211.pdf 

● The model uses a Seq-Seq 
Encoder-Decoder approach.

● Encoder (Listener) is a Pyramidal 
BiLSTM network.

● Decoder (Speller) is an attention 
based LSTM network.

● 40000 hours of data. 
● A month of training.
● WER of 14% (without language 

model)
● WER of 10% (with language model)

Listen, Attend Spell is an end-to-end model that learns to transcribe speech 
utterances to characters. It was published in 2015 by google. It follows a sequence to 
sequence architecture and uses an encoder-decoder approach. Unlike pipeline based 
approach this model doesn’t need to worry about the alignment of audio and ground 
truth transcriptions and it doesnt need to worry about single character spanning 
multiple audio frames. All this is inherently handled by the encoder-decoder 
architecture.

The input is a sequence of feature vectors and the output is also a sequence of 
characters. These sequence need not be of similar length. The first part if the encoder 
part which is also called the listener. It is a pyramidal BiLSTM network. The goal of the 
listener is to encode the sequence of input features into a smaller sequence of 
condensed representations.

These condensed representations are then used by the Decoder for generating the 
transcriptions. The decoder is an attention based LSTM network. For each timestep it 
takes the previous LSTM state as input along with the previous predicted characters 
and also the context from the attention layer. This way end-to-end models do not 
make an independent assumption about the predicted characters which the CTC 
model was assuming.

These models are huge and takes a lot of data, computing power and time to train. 
This particular model was trained on 40000 hours of data. It took almost 1 month for 
this model to converge.

https://arxiv.org/pdf/1508.01211.pdf


It achieved an WER rate of 10% with language model refinement and an WER of 14% 
without any language model refinement.



Summary 



Thank You!

Questions?


