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Multi-Domain Dialogue State 
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Introduction
Last summer our team of data scientists attended the 57th Annual Meeting of the 
Association for Computational Linguistics (ACL) at Florence. It was a great learning 
and team bonding experience for all of us(as you can see in the image below).
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During the conference we learned about this really interesting paper - Transferable 
Multi-Domain State Generator for Task-Oriented Dialogue Systems. It received two 
awards in the conference, an outstanding paper award the best paper award at NLP 
for Conversational AI Workshop.

Currently at ebot7 we are building a system (which we call Conversational Engine) 
for managing conversations by keeping track of dialog states and then deciding 
which action to take based on the current state and context. To this end we wanted to 
do a small proof of concept on the above mentioned paper and through this blog we 
will share our findings. In this first post we want to share an intuitive and detailed 
explanation of the proposed architecture.

Dialog State Tracking (DST)
The main goal of DST is to extract information from dialogs which will enable a dialog 
system to appropriately manage conversations. For instance, in task oriented 
systems, such as ticket booking, it is essential to gather information about departure 

After learning a lot for three days in the conference these neurons just decided to dropout on the 
couch a.k.a. taking a quick nap.

https://arxiv.org/abs/1905.08743
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location, departure time, destination etc to better understand a user’s intention and 
then take appropriate action or collect more information. The job of DST is to extract 
this information and this extracted information is what defines the state of a dialog. 
We can use different formalization to represent a state eg. it can either   be 
represented in the form of a list of (domain, slot, value)  tuples or we can use a 
compact version where we convert these tuples into vectors.

Simple Classification
One way of approaching the DST problem is to transform it into a classification 
problem where each (domain, slot, value)  tuple would be considered as one class. 
This approach is very simple and intuitive but, it has some drawbacks.

1. We need to know all the possible (domain, slot, value)  combinations in advance. 
For many slots such as departure time it is impractical to generate all the 
combinations.

2. Every time we need to detect a new (domain, slot, value)  combination we need 
to retrain the model.

Entity Recognition
Another approach could be to transform this into an entity recognition problem. In 
this, (slot, value)  tuple gets mapped to (entity type, entity value) . So, what we 
need to do here is, extract entity values and then map the extracted values to the 
appropriate tags. Although it circumvents some of the problems (e.g in some entity 
types we don't need all the combinations in advance) which we had in the previous 
approach but, it still has its own shortcomings.

1. We still need to retrain the model whenever we want to detect a new entity type.

2. We need to think of ways to uniquely map the extracted entity values to their 
correct slots. For instance, a location entity value can be mapped to both 
destination and departure slots.

TRAnsferable Dialogue statE generator (TRADE)
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The third approach is called TRADE and it is proposed by the authors of this paper 
that we are reviewing. This approach is capable of tracking states from multiple 
domains and across multiple turns. Following are some of the main benefits of this 
approach.

1. This framework can be easily applied on multiple domains i.e you can train the 
model by combining data from multiple domains and then use this single model 
to perform inference on dialogues from multiple domains. The motivation for 
doing this comes from the fact that there are many slots that are common across 
domains. For instance, area slot can exist in restaurant as well as in hotel 
domain. This benefit is not unique to the TRADE approach, classification and 
entity recognition approaches can also take advantage of this fact.

2. The TRADE model also takes into account context from previous turns while 
predicting state for the current turn. The motivation for doing this comes from the 
fact that sometimes values of slots in the current turn can be extracted from the 
previous turns. For instance, in the dialogue shown in figure1 the name slot in 
the restaurant domain can share the same value with the departure slot in the 

Figure 1: An example of multi-domain dialogue state tracking in a conversation. The solid arrows on 
the left are the single-turn mapping, and the dot arrows on the right are multi-turn mapping. The 
state tracker needs to track slot values mentioned by the user for all the slots in all the domains.
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taxi domain. Hence, the value for the departure slot in the taxi domain can be 
extracted from the previous turns,

3. By doing multi-domain training i.e sharing model parameters across multiple 
domains the model is also capable of tracking states on unseen domains with the 
help of zero-shot learning and few-shot learning. This is definitely a really good 
benefit to have but unfortunately, the results for zero-shot learning and few-shot 
learning presented in the paper are not that impressive.

4. The model uses a combination of copy vs generate mechanism for predicting slot 
values. For this, it combines a probability distribution over vocabulary and a 
distribution over the dialogue history. This gives the model an ability to generate 
words for slot values even if they are not present in the dialogue history.

TRADE Model

Figure 2: The architecture of the proposed TRADE model, which includes (a) an utterance encoder, 
(b) a state generator, and (c) a slot gate, all of which are shared among domains. The state 

generator will decode J times independently for all the possible (domain, slot) pairs. At the first 
decoding step, the state generator will take the j-th (domain, slot) embeddings as input to generate 

its corresponding slot values and slot gate. The slot gate predicts whether the j-th (domain, slot) pair 
is triggered by the dialogue or not.
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After having a look at salient features of the TRADE model in the previous section let 
us now formally define each component of the model as shown in figure 2.

Let math:X be a dialogue consisting of 
math: T turns. Each turn is either a user 
utterance math:U or a system response 
math: R . Let math:B represent a set of 
dialogue states for each turn. Each 
state math:B_t is defined as a tuple of 
(Domain math:D_n , Slot math:S_m , 
Value math:Y_j ). There are math:N different 
domains and math:M different slots 
and math:J possible (domain, slot)  
combinations. As shown in the following 
equations ( math:D_n , math:S_m ) is the 
math:j^{th}  domain-slot combination 
with math:Y_j^{value} as the true slot 
value(consisting of sequence of words) for 
this math:j^{th} combination.

Utterance Encoder
The paper uses a bi-directional GRU as utterance encoder but in practice you can 
also use any other model. The input to the encoder is a subset of dialogue called 
history and denoted by math:X_t . It's simply a concatenation of all the words in the 
last math:l turns of utterances and responses. 

The value of math:l controls how much history we want to consider for predicting 
states. math:|X_t| denotes the number of words/tokens in the 
history, math:d_{emb} denotes word embedding size.

The output math:H_t of the encoder is a set of math:|X_t| number of encoded words 
where math:d_{hdd} denotes the GRU output size. 

State Generator

X = (U ,R ), ..., (U ,R )1 1 T T

B = B , ...,B1 T

S = S , ...,S1 M

D = D , ...,D1 N

B =t (D ,S ,Y )n m j
value

X =t [U ,R , ...,U ,R ] ∈t−l t−l t t R∣X ∣×dt emb

H =t [h , ...,h ] ∈1
enc

∣X ∣t
enc R∣X ∣×dt hdd
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The goal of the state generator is to generate slot values either by copying words 
from dialogue history or by selecting words from the available vocabulary. In order to 
achieve this, the state generator produces two probability distributions, one over the 
vocabulary and another over the history and then combines them to a final probability 
distribution. Words are picked using this final probability distribution. State generator 
is applied independently on all the math:J  (domain,sot)  combinations. State generator 
is composed of the following 6 components.

1. Decoder
A GRU is used as a decoder and it's goal is to generate decodings which can then 
be used for predicting slot values for each (domain, slot)  combinations. The first 
input denoted by math:w_{j0} to the decoder for the math:j^{th}  (domain, slot)  
combination is the summed embedding of the domain and slot as shown in figure 2. 
The slot value predicted by the state generator is passed as the input to the next time 
step of the decoder. This is done until an end marker is reached. An important thing 
to note here is that the slot generator is applied independently on all the math: 

J combinations, each having it's own different number of decoding timesteps. For 
instance, the decoder for math:j^{th} combination at math:k^{th} decoding step takes in 
a word embedding math: w_{jk} (computed in the math: k-1^{th} step) as input and 
returns a hidden state math: h_{jk}^{dec} as output.

2. Probability distribution over vocabulary
The next step is to somehow map decoder hidden state math: h_{jk}^{dec} into the 
vocabulary space math: P_{jk}^{vocab} . This is done by learning a transformation 
matrix math:E \in\mathbb R^{|V|\times d_{hdd}} , where math:|V| is the vocabulary size 
and math:d_{hdd} is the hidden vector size.

In other words, math: P_{jk}^{vocab} effectively tells us which word to select out of the 
vocabulary math: V for the math:k^{th}  slot value word in the math: j^{th} combination 
pair.

3. Probability distribution over history
Similarly, at the same time the hidden state math: h_{jk}^{dec} is also used to compute 
some sort of an attention distribution math:P_{jk}^{history}  over the encoded dialogue 
history math: H_t . Intuitively, the goal here is to find words from the history that can be 
copied as slot values for a particular (domain, slot)  combination.

P =jk
vocab Softmax(E.(h ) ) ∈jk

dec T R∣V ∣
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4. Final probability distribution
Now, we compute the final probability distribution math:P_{jk}^{final}  over the 
vocabulary math: V by computing a weighted sum of the probability distribution over 
vocabulary math:P_{jk}^{vocab}  and probability distribution over 
history math:P_{jk}^{history} .

The scalar weight math: p_{jk}^{gen} controls how much importance we want to give to 
selecting words from the vocabulary vs copying words from the history. Due to this 
the model is able to generate slot values even if they are not present in the dialogue 
history.

5. Trainable scalar to control copying vs generating ability
The scalar weight math: p_{jk}^{gen} is not a hyperparameter instead it is learned 
during the training. Following equation tells us how to compute this scalar weight.

math: W_1 is a trainable matrix and math:c_{jk} is the context vector. The value 
of math:p_{jk}^{gen} range between [0,1]. Higher value means that model is in support 
of generating a word from vocabulary rather than copying it from the history.  

6. Context vector
The context vector math:c_{jk}  stores a condensed form of information from the 
recent dialogue history. It is simply computed as a weighted sum over the encoded 
history math: H_t .

Slot Gate
The goal of the slot gate is to predict whether a (domain, slot)  combination is present 
in the dialogue or not. Slot Gate math: G is a classifier that takes in the very first 
context vector as input and generates a probability distribution over three output 
classes (ptr, none, dontcare) . 

P =jk
history Softmax(H .(h ) ) ∈t jk

dec T R∣X ∣t

P =jk
f inal p ×jk

gen P +jk
vocab (1 − p ) ×jk

gen P ∈jk
history R∣V ∣

p =jk
gen Sigmoid(W .[h ;w ; c ]) ∈1 jk

dec
jk jk R1

c =jk P .H ∈jk

history
t Rdhdd

T 3
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So in practice we need to perform slot gate check only once at math:0^{th} timestep 
for all the math: J combinations. If the gate produces either none or dontcare then the 
generator values are ignored and that particular pair of (domain,slot)  combinations is 
considered as being absent from the dialogue. On the other hand if the gate 
produces ptr then the words generated by the generator are considered as slot 
values.

Optimization
The model is learned by optimizing for both the slot gate and the state generator. The 
final loss is a weighted sum of slot gate loss math:L_g  and state generator 
loss math:L_v . 

The weights math:\alpha and math:\beta are hyperparameters.

Slot gate loss
For the slot gate loss a cross-entropy is computed using the predicted 
classes math:G_j  and the ground truth one-hot labels math:y_j^{gate} .

State generator loss
For the generator loss, another cross-entropy loss is computed between the final 
probability distribution over words math:P_{jk}^{final}  and the true words of slot 
values math: Y_j^{label} . The inner summation is over the words of a slot value and 
the outer one is over all the math:J  combinations.

Results

G =j Softmax(W .(c ) ) ∈g j0
T R3

L = αL +g βLv

L =g −log(G .(y ) )
j=1

∑
J

j j
gate T

L =v −log(P .(y ) )
j=1

∑
J

k=1

∑
∣Y ∣j

jk
f inal

jk
value T
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Evaluation Metrics

Joint Accuracy
It measure the predicted dialogue states to the ground truth states math: B_t at each 
dialogue turn math: t . A prediction is considered correct if and only if all the predicted 
values of all the states in a turn exactly match the ground truth values. 

Slot Accuracy
It is a slightly lenient metric compared to the joint accuracy discussed above. In this, 
each (domain, slot, value)  triplet is independently compared with its ground truth 
label. 

Analysis
1. TRADE model has the highest joint accuracy even better than the current SOTA.

2. Zero shot performance of taxi domain is pretty good but it is not so impressive for 
other domains.

3. All the domains in the dataset are somewhat similar to each other and also have 
some common slots. It is because of this reason that the taxi domain's zero-shot 
performance is high, since it shares similar slots with the train domain.

Table 1: The multi-domain DST evaluation on 
MultiWOZ and its single restaurant domain. 

TRADE has the highest joint accuracy, which 
surpasses current state-of-the-art GCE model.

Table 2: Zero-shot experiments on an unseen 
domain. In taxi domain, our model achieves 

60.58% joint goal accuracy without training on 
any samples from taxi domain. Trained Single 
column is the results achieved by training on 

100% single-domain data as a reference.
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For more results and in-depth error analysis please refer the paper. Since the source 
code is publicly available we are also planning to perform our own analysis on some 
real world data. Stay tuned, we will be publishing the second part of this blog post 
with our results very soon.
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