
Multi-Domain Dialogue State Tracking 1

💬
Multi-Domain Dialogue State
Tracking

Introduction
Last summer our team of data scientists attended the 57th Annual Meeting of the
Association for Computational Linguistics (ACL) at Florence. It was a great learning
and team bonding experience for all of us(as you can see in the image below).

Introduction
Dialog State Tracking (DST)

Simple Classification
Entity Recognition
TRAnsferable Dialogue statE generator (TRADE)

TRADE Model
Utterance Encoder
State Generator

1. Decoder
2. Probability distribution over vocabulary
3. Probability distribution over history
4. Final probability distribution
5. Trainable scalar to control copying vs generating ability
6. Context vector

Slot Gate
Optimization

Slot gate loss
State generator loss

Results
Evaluation Metrics

Joint Accuracy
Slot Accuracy

Analysis
References

Multi-Domain Dialogue State Tracking 2

During the conference we learned about this really interesting paper - Transferable
Multi-Domain State Generator for Task-Oriented Dialogue Systems. It received two
awards in the conference, an outstanding paper award the best paper award at NLP
for Conversational AI Workshop.

Currently at ebot7 we are building a system (which we call Conversational Engine)
for managing conversations by keeping track of dialog states and then deciding
which action to take based on the current state and context. To this end we wanted to
do a small proof of concept on the above mentioned paper and through this blog we
will share our findings. In this first post we want to share an intuitive and detailed
explanation of the proposed architecture.

Dialog State Tracking (DST)
The main goal of DST is to extract information from dialogs which will enable a dialog
system to appropriately manage conversations. For instance, in task oriented
systems, such as ticket booking, it is essential to gather information about departure

After learning a lot for three days in the conference these neurons just decided to dropout on the
couch a.k.a. taking a quick nap.

https://arxiv.org/abs/1905.08743

Multi-Domain Dialogue State Tracking 3

location, departure time, destination etc to better understand a user’s intention and
then take appropriate action or collect more information. The job of DST is to extract
this information and this extracted information is what defines the state of a dialog.
We can use different formalization to represent a state eg. it can either be
represented in the form of a list of (domain, slot, value) tuples or we can use a
compact version where we convert these tuples into vectors.

Simple Classification
One way of approaching the DST problem is to transform it into a classification
problem where each (domain, slot, value) tuple would be considered as one class.
This approach is very simple and intuitive but, it has some drawbacks.

1. We need to know all the possible (domain, slot, value) combinations in advance.
For many slots such as departure time it is impractical to generate all the
combinations.

2. Every time we need to detect a new (domain, slot, value) combination we need
to retrain the model.

Entity Recognition
Another approach could be to transform this into an entity recognition problem. In
this, (slot, value) tuple gets mapped to (entity type, entity value) . So, what we
need to do here is, extract entity values and then map the extracted values to the
appropriate tags. Although it circumvents some of the problems (e.g in some entity
types we don't need all the combinations in advance) which we had in the previous
approach but, it still has its own shortcomings.

1. We still need to retrain the model whenever we want to detect a new entity type.

2. We need to think of ways to uniquely map the extracted entity values to their
correct slots. For instance, a location entity value can be mapped to both
destination and departure slots.

TRAnsferable Dialogue statE generator (TRADE)

Multi-Domain Dialogue State Tracking 4

The third approach is called TRADE and it is proposed by the authors of this paper
that we are reviewing. This approach is capable of tracking states from multiple
domains and across multiple turns. Following are some of the main benefits of this
approach.

1. This framework can be easily applied on multiple domains i.e you can train the
model by combining data from multiple domains and then use this single model
to perform inference on dialogues from multiple domains. The motivation for
doing this comes from the fact that there are many slots that are common across
domains. For instance, area slot can exist in restaurant as well as in hotel
domain. This benefit is not unique to the TRADE approach, classification and
entity recognition approaches can also take advantage of this fact.

2. The TRADE model also takes into account context from previous turns while
predicting state for the current turn. The motivation for doing this comes from the
fact that sometimes values of slots in the current turn can be extracted from the
previous turns. For instance, in the dialogue shown in figure1 the name slot in
the restaurant domain can share the same value with the departure slot in the

Figure 1: An example of multi-domain dialogue state tracking in a conversation. The solid arrows on
the left are the single-turn mapping, and the dot arrows on the right are multi-turn mapping. The
state tracker needs to track slot values mentioned by the user for all the slots in all the domains.

Multi-Domain Dialogue State Tracking 5

taxi domain. Hence, the value for the departure slot in the taxi domain can be
extracted from the previous turns,

3. By doing multi-domain training i.e sharing model parameters across multiple
domains the model is also capable of tracking states on unseen domains with the
help of zero-shot learning and few-shot learning. This is definitely a really good
benefit to have but unfortunately, the results for zero-shot learning and few-shot
learning presented in the paper are not that impressive.

4. The model uses a combination of copy vs generate mechanism for predicting slot
values. For this, it combines a probability distribution over vocabulary and a
distribution over the dialogue history. This gives the model an ability to generate
words for slot values even if they are not present in the dialogue history.

TRADE Model

Figure 2: The architecture of the proposed TRADE model, which includes (a) an utterance encoder,
(b) a state generator, and (c) a slot gate, all of which are shared among domains. The state

generator will decode J times independently for all the possible (domain, slot) pairs. At the first
decoding step, the state generator will take the j-th (domain, slot) embeddings as input to generate

its corresponding slot values and slot gate. The slot gate predicts whether the j-th (domain, slot) pair
is triggered by the dialogue or not.

Multi-Domain Dialogue State Tracking 6

After having a look at salient features of the TRADE model in the previous section let
us now formally define each component of the model as shown in figure 2.

Let math:X be a dialogue consisting of
math: T turns. Each turn is either a user
utterance math:U or a system response
math: R . Let math:B represent a set of
dialogue states for each turn. Each
state math:B_t is defined as a tuple of
(Domain math:D_n , Slot math:S_m ,
Value math:Y_j). There are math:N different
domains and math:M different slots
and math:J possible (domain, slot)
combinations. As shown in the following
equations (math:D_n , math:S_m) is the
math:j^{th} domain-slot combination
with math:Y_j^{value} as the true slot
value(consisting of sequence of words) for
this math:j^{th} combination.

Utterance Encoder
The paper uses a bi-directional GRU as utterance encoder but in practice you can
also use any other model. The input to the encoder is a subset of dialogue called
history and denoted by math:X_t . It's simply a concatenation of all the words in the
last math:l turns of utterances and responses.

The value of math:l controls how much history we want to consider for predicting
states. math:|X_t| denotes the number of words/tokens in the
history, math:d_{emb} denotes word embedding size.

The output math:H_t of the encoder is a set of math:|X_t| number of encoded words
where math:d_{hdd} denotes the GRU output size.

State Generator

X = (U ,R), ..., (U ,R)1 1 T T

B = B , ...,B1 T

S = S , ...,S1 M

D = D , ...,D1 N

B =t (D ,S ,Y)n m j
value

X =t [U ,R , ...,U ,R] ∈t−l t−l t t R∣X ∣×dt emb

H =t [h , ...,h] ∈1
enc

∣X ∣t
enc R∣X ∣×dt hdd

Multi-Domain Dialogue State Tracking 7

The goal of the state generator is to generate slot values either by copying words
from dialogue history or by selecting words from the available vocabulary. In order to
achieve this, the state generator produces two probability distributions, one over the
vocabulary and another over the history and then combines them to a final probability
distribution. Words are picked using this final probability distribution. State generator
is applied independently on all the math:J (domain,sot) combinations. State generator
is composed of the following 6 components.

1. Decoder
A GRU is used as a decoder and it's goal is to generate decodings which can then
be used for predicting slot values for each (domain, slot) combinations. The first
input denoted by math:w_{j0} to the decoder for the math:j^{th} (domain, slot)
combination is the summed embedding of the domain and slot as shown in figure 2.
The slot value predicted by the state generator is passed as the input to the next time
step of the decoder. This is done until an end marker is reached. An important thing
to note here is that the slot generator is applied independently on all the math:

J combinations, each having it's own different number of decoding timesteps. For
instance, the decoder for math:j^{th} combination at math:k^{th} decoding step takes in
a word embedding math: w_{jk} (computed in the math: k-1^{th} step) as input and
returns a hidden state math: h_{jk}^{dec} as output.

2. Probability distribution over vocabulary
The next step is to somehow map decoder hidden state math: h_{jk}^{dec} into the
vocabulary space math: P_{jk}^{vocab} . This is done by learning a transformation
matrix math:E \in\mathbb R^{|V|\times d_{hdd}} , where math:|V| is the vocabulary size
and math:d_{hdd} is the hidden vector size.

In other words, math: P_{jk}^{vocab} effectively tells us which word to select out of the
vocabulary math: V for the math:k^{th} slot value word in the math: j^{th} combination
pair.

3. Probability distribution over history
Similarly, at the same time the hidden state math: h_{jk}^{dec} is also used to compute
some sort of an attention distribution math:P_{jk}^{history} over the encoded dialogue
history math: H_t . Intuitively, the goal here is to find words from the history that can be
copied as slot values for a particular (domain, slot) combination.

P =jk
vocab Softmax(E.(h)) ∈jk

dec T R∣V ∣

Multi-Domain Dialogue State Tracking 8

4. Final probability distribution
Now, we compute the final probability distribution math:P_{jk}^{final} over the
vocabulary math: V by computing a weighted sum of the probability distribution over
vocabulary math:P_{jk}^{vocab} and probability distribution over
history math:P_{jk}^{history} .

The scalar weight math: p_{jk}^{gen} controls how much importance we want to give to
selecting words from the vocabulary vs copying words from the history. Due to this
the model is able to generate slot values even if they are not present in the dialogue
history.

5. Trainable scalar to control copying vs generating ability
The scalar weight math: p_{jk}^{gen} is not a hyperparameter instead it is learned
during the training. Following equation tells us how to compute this scalar weight.

math: W_1 is a trainable matrix and math:c_{jk} is the context vector. The value
of math:p_{jk}^{gen} range between [0,1]. Higher value means that model is in support
of generating a word from vocabulary rather than copying it from the history.

6. Context vector
The context vector math:c_{jk} stores a condensed form of information from the
recent dialogue history. It is simply computed as a weighted sum over the encoded
history math: H_t .

Slot Gate
The goal of the slot gate is to predict whether a (domain, slot) combination is present
in the dialogue or not. Slot Gate math: G is a classifier that takes in the very first
context vector as input and generates a probability distribution over three output
classes (ptr, none, dontcare) .

P =jk
history Softmax(H .(h)) ∈t jk

dec T R∣X ∣t

P =jk
f inal p ×jk

gen P +jk
vocab (1 − p) ×jk

gen P ∈jk
history R∣V ∣

p =jk
gen Sigmoid(W .[h ;w ; c]) ∈1 jk

dec
jk jk R1

c =jk P .H ∈jk

history
t Rdhdd

T 3

Multi-Domain Dialogue State Tracking 9

So in practice we need to perform slot gate check only once at math:0^{th} timestep
for all the math: J combinations. If the gate produces either none or dontcare then the
generator values are ignored and that particular pair of (domain,slot) combinations is
considered as being absent from the dialogue. On the other hand if the gate
produces ptr then the words generated by the generator are considered as slot
values.

Optimization
The model is learned by optimizing for both the slot gate and the state generator. The
final loss is a weighted sum of slot gate loss math:L_g and state generator
loss math:L_v .

The weights math:\alpha and math:\beta are hyperparameters.

Slot gate loss
For the slot gate loss a cross-entropy is computed using the predicted
classes math:G_j and the ground truth one-hot labels math:y_j^{gate} .

State generator loss
For the generator loss, another cross-entropy loss is computed between the final
probability distribution over words math:P_{jk}^{final} and the true words of slot
values math: Y_j^{label} . The inner summation is over the words of a slot value and
the outer one is over all the math:J combinations.

Results

G =j Softmax(W .(c)) ∈g j0
T R3

L = αL +g βLv

L =g −log(G .(y))
j=1

∑
J

j j
gate T

L =v −log(P .(y))
j=1

∑
J

k=1

∑
∣Y ∣j

jk
f inal

jk
value T

Multi-Domain Dialogue State Tracking 10

Evaluation Metrics

Joint Accuracy
It measure the predicted dialogue states to the ground truth states math: B_t at each
dialogue turn math: t . A prediction is considered correct if and only if all the predicted
values of all the states in a turn exactly match the ground truth values.

Slot Accuracy
It is a slightly lenient metric compared to the joint accuracy discussed above. In this,
each (domain, slot, value) triplet is independently compared with its ground truth
label.

Analysis
1. TRADE model has the highest joint accuracy even better than the current SOTA.

2. Zero shot performance of taxi domain is pretty good but it is not so impressive for
other domains.

3. All the domains in the dataset are somewhat similar to each other and also have
some common slots. It is because of this reason that the taxi domain's zero-shot
performance is high, since it shares similar slots with the train domain.

Table 1: The multi-domain DST evaluation on
MultiWOZ and its single restaurant domain.

TRADE has the highest joint accuracy, which
surpasses current state-of-the-art GCE model.

Table 2: Zero-shot experiments on an unseen
domain. In taxi domain, our model achieves

60.58% joint goal accuracy without training on
any samples from taxi domain. Trained Single
column is the results achieved by training on

100% single-domain data as a reference.

Multi-Domain Dialogue State Tracking 11

For more results and in-depth error analysis please refer the paper. Since the source
code is publicly available we are also planning to perform our own analysis on some
real world data. Stay tuned, we will be publishing the second part of this blog post
with our results very soon.

References
1. https://arxiv.org/abs/1905.08743

2. https://github.com/jasonwu0731/trade-dst

https://arxiv.org/abs/1905.08743
https://github.com/jasonwu0731/trade-dst
https://arxiv.org/abs/1905.08743
https://github.com/jasonwu0731/trade-dst

